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Abstract: 

We present an environment to process and analyze high-frequency trading data. High-frequency 

trading involves a large number of transactions happening within a fraction of a second, leading 

to a very complex financial time-series. Analyzing such data and developing an investment 

strategy to maximize returns in the high-frequency trading scenario involves complex decision 

making. While Reinforcement Learning (RL) has been used in the past to analyze normal stock 

data, there haven’t been any significant advances in using RL to analyze such high-frequency 

data. Our environment provides the ability to process such data by building and maintaining a 

limit order book which is then passed on to RL agents for training and developing strategies. We 

develop and test the ability of RL agents to process such data and present results on their 

performance.  
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1. Introduction 

In stock trading, the main goal is to develop an investment strategy to buy/sell stocks to maximize 

the profits. Traditionally, investment firms have used statistical techniques like calculating 

moving average and financial technical indicators like Relative Strength Index (RSI) and 

Commodity Channel Index (CSI) to develop investment strategies. However, the stock market can 

be thought of as a very complex process which cannot be modeled and predicted well enough by 

simply using these traditional techniques.  

In recent years, Deep Learning (DL) has been widely used to model the stock market and predict 

the changes in stock prices. Deep Neural Networks are universal functional approximators and 

hence, they do a better job of modeling the stock market as compared to traditional techniques.  

 Reinforcement Learning techniques have also started to gain a lot of attention in the field of 

finance, as RL involves learning an optimal policy which maximizes rewards. This fits in very well 

with the financial framework, where learning an optimal policy can be thought of as learning an 

optimal investment strategy and maximizing rewards can be thought of as maximizing profits.  

However, most of the literature has been focused on processing stock data on a scale of 

days/months/years. There are many reasons for this - Such stock data is readily and freely 

available over the internet and it is easy to process and deal with.  

On the other hand, high-frequency data is not readily available to the public and requires massive 

computational power to process. But at the same time, the high-frequency data contains a 

plethora of information which if meaningfully processed can help develop profitable strategies.  
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This high-frequency data can be thought of as continuous time-series data where some trade 

takes place every time step (where the time step represents a fraction of a second). Therefore, 

Reinforcement Learning is a good fit for modeling such data as it is known to work well in model-

free environments with complex environment dynamics like this.  

In our work, we have created an environment to process the high-frequency data in an efficient 

way. This environment is wrapped around OpenAI’s Gym interface so that it can be easily 

accessed by different RL agents. We train different RL agents and test their performance using 

various metrics like – Mean Reward, Sharpe Ratio and Hit Ratio.  

2. Related Work 

Most of the techniques in the literature use traditional statistics and technical indicators to form 

features in a meaningful way which are then passed to the Deep Learning model. Various Deep 

Learning architectures have been tested in the financial setting. Dash et al., 2016 used a hybrid 

stock trading framework which integrates traditional technical analysis with Deep Neural 

Networks. Chen et al., 2016 and Seizer et al., 2018 use Deep Convolution Neural Networks to 

predict which action to take based on images. They form these images by using different technical 

indicators such that the values of these indicators correspond to a different pixel value. 

Reinforcement Learning has also been used successfully by Yang et al., 2020 and Lee J.W, 2001 

to predict stock movement. Reinforcement Learning has also recently been used for high 

frequency trading by Briola et al., 2021 and Rundo et al., 2019.  
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3. Market Data 

 

Figure 1: Example of limit order book, image courtesy of Richard Holowczak 

We use market data from the IEX Trading Platform which can be downloaded from their website.  

There are two types of market data available on their website:  

• Depth of the book (DEEP): This data will reflect real time changes in the limit order book  

• Top of the book (TOPS): This data reflects the Best Bid/Offer (BBO); i.e., the top of the 

book. 

In our work, we use DEEP (Depth of the Book) data which contains high-frequency trading 

information. This high-frequency trading information is contained in the form of order book 

changes happening in real-time. These changes are provided in the data in the form of price-level 

updates. An order book stores limit orders which are reflected by the price-level updates. Limit 

orders are orders which are only executed if certain conditions are met. For example, consider 

the limit order book instance in figure 1. A separate order book exists for each stock and in each 

book, there are two sides – buyers and sellers. Whenever someone wants to buy a stock in the 

form of a limit order, they specify the maximum amount of price they are willing to pay and 

number of shares (volume) to buy. These orders are arranged descending order of bid prices 
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(highest to lowest). On the other side, whenever someone wants to sell a stock, they specify the 

minimum amount they are willing to sell it for and the number of shares they are willing to sell. 

These entries are arranged in ascending order of ask prices (lowest to highest). An order is 

executed only if the conditions are met on both sides.  

Our environment maintains such an order book for every stock by processing the price level 

update information from the IEX data.  

4. System overview 

 

Figure 2: Overview of the RL framework 

There are two major parts in our project as seen in figure 2. We have a custom environment 

which can process the limit order data. This environment is wrapped around OpenAI’s Gym 

wrapper so that it can be easily used by RL agents.  
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At the agents’ side, we use the PFRL library (Fujita et al., 2019) to develop and train the agents. 

There is a PFRL base class which takes in any custom-built agent built using PFRL functions and 

then using that agent the class interacts with our custom environment.  

5. Environment 

5.1 Building the order book  

Like mentioned in the previous section, the order book is built by processing the price level 

update messages. We process these price-level update messages using iex_parser module. The 

end user can provide a list of stock to limit the messages only w.r.t those stocks. The IEX Trading 

platform has 430 stocks trading in a day, which is a big number and RL agents would have a 

difficult time predicting over the entire list of stocks. Hence, by providing a list of stocks, the 

complexity of the environment gets reduced. For our experiments, we chose the top 50 most 

traded stocks out of the 430. The top n most traded stocks can be dynamically calculated for any 

DEEP data file using the function which we provide in data_utils file.  

The order book in our environment is of the following form (key -> value dictionary pair) :  

𝑠𝑡𝑜𝑐𝑘 𝑛𝑎𝑚𝑒 → [[𝑏𝑖𝑑 𝑏𝑜𝑜𝑘], [𝑎𝑠𝑘 𝑏𝑜𝑜𝑘], {𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑓𝑜 𝑏𝑖𝑑}, {𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑓𝑜 𝑎𝑠𝑘}  

The bid book and ask book lists contain the price information. The prices are sorted using bisect 

module. We maintain separate dictionaries to store volume information for fast access. These 

volume info dictionaries are of the form: price -> number of shares.  
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The price level update message from the parser gives us the stock name, side (Buyer/seller) and 

available volume. Based on this info, we perform order book update. When the available volume 

is zero, we delete the entry from the order book, i.e., we assume that the trade got executed.  

Algorithm:  

If new stock:  
 Initialize entry in order book  
  Order_book[stock] = [[], [], {}, {}] 
 
If Buyers side:  
 Add entry to the buyers list using bisect module and update available vol   
        info for it  
  
 If available vol == 0:  
          Pop last entry (highest bid price) 
  
If Sellers side:  
 Add entry to order sellers list using bisect module and update available vol  
        info for it 
 
 If available vol == 0:  
  Pop first entry (lowest ask price) 
 
Note: When available vol == 0, then orders corresponding to the highest bid and 
lowest ask should be traded but we found that there are rare cases when this is not 
the case. This can be attributed to the fact that buyer/seller may retract their 
order which may lead to available vol == 0 condition; hence, our implementation also 
checks for this case    

 

Limitations:  

• As we are only getting the price level update information, we cannot distinguish between 

two orders if they have the exact same price value. We simply assume same that the same 

price value belongs to the same order and only update the volume information for that 

price level. 



9 
 

• The order book cannot take in external limit order; i.e., from the RL agent as this would 

disrupt the follow of the entries being parsed from the IEX data. Hence, we assume that 

the agent can only place market orders.  

 

5.2 State Representation       

The state is made of three parts – Order Book Array, Feature Array and Portfolio Array.  

• Order Book array: The order book array contains the top n entries from the order book 

for each stock. For our experiments, we choose n = 10. Empty values are denoted using 

 -1.  

• Feature array: Five features are calculated for each stock at each time step. They are as 

follows:  

o Spread: It is calculated as the difference between highest bid price and lowest ask 

price  

o Total volume at buyers’ side:  This is calculated by summing over all volume 

entries on the buyers’ side for a stock  

o Total volume at sellers’ side: This is calculated by summing over all volume entries 

on the sellers’ side for a stock  

o Mid-price: The mid-price gives a unique single price to a stock. This is calculated 

as the average of the highest bid and lowest ask price.  
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Let Pb denote the highest bid price and Pa denote the lowest ask price. Then, mid-

price at time step t is as follows:  

 

o Micro Price: Micro-price is similar to mid-price but it also weights the average by 

the volume of the highest bid and lowest ask price. Let Vb be the volume of shares 

at highest bid and Va be the volume of shares at lowest ask. Then micro-price at 

time step t is given as follows: 

 

• Portfolio Array: The portfolio array maintains three pieces of information for each stock 

– Number of shares bought, total amount spent on buying those shares and the value of 

the bought shares at current time step t.  

The values in order book array and feature array are normalized between -1 and 1. Portfolio array 

values are normalized between 0 and 1. These three arrays are then combined into a list and 

returned to the agent at each time step. 

 

 

 

 



11 
 

5.3 Action Space  

The action space of the environment is discrete and can take one of the three values. They are 

as follows: Buy (0), Sell (1), Hold (2).  

Along with these three discrete actions, the agent will also output a stock matrix indicating which 

of the n stocks to buy (in our experiments, n = 50). So, this stock matrix will 50 entries where each 

entry is either 1 or 0.  Each action works as follows:  

• Buy (0): We take the stock matrix outputted by the agent and pass it through a liquidity 

checker which ensures that the stock which the agents want to buy are actually available 

at present, i.e., there is at least one sell entry in the order book for that stock. In case a 

stock is not available, it is set to 0 in the stock matrix. After passing it through the liquidity 

checker, the stock is purchased and added to the agent’s portfolio. We only allow one 

share to be purchased per share per time step to simplify the environment. Fractional 

shares cannot be purchased as of now, as that too would increase the complexity of the 

environment.  

• Sell (1): Similar to the buy case, we ensure using the liquidity checker that there is actually 

someone to buy the stock, i.e., there is at least one buy entry in the order book. We 

assume that the agent wants to sell all of the stocks to simply the environment. The stocks 

are sold at the highest bid price based on the current order book.  

• Hold (2): This action implies that the agent does not wish to either buy or sell for that 

time step.  
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5.4 Reward Design  

Most of the literature only uses profit/loss as the reward signal. To incorporate a denser reward 

structure, we also calculate rewards in the buy/hold scenarios.  The reward structure for each 

case is as follows:  

• Buy (0): To check whether buying a stock is a good or bad move, we apply a lookahead 

on the order book; i.e., how will the order book look f time steps ahead. We use f = 50 for 

our experiments. So, if after f time steps ahead, the buy price has gone done for a stock, 

then buying it right now was a bad idea, if it has gone up, then buying it at present is a 

good idea. The reward is calculated as follows:  

𝑀𝑓 − 𝑀𝑐 

Where Mf  is the mean cost to buy the shares in the future (50 time steps ahead) and Mc  

is the mean cost to buy the shares at current time step. There is another case to consider. 

In case, the stocks are no longer available in the future, it means they got sold out. So, in 

this case too, we reward the agent positively and give it a fixed reward of +5.  

• Sell (1):  The reward for the sell action is profit/loss after selling the shares.  

• Hold (2): As this is a high frequency scenario, we want the agent to be “active”. So, we 

penalize the agent if it holds (does nothing) for too long. We have a hold threshold which 

is set to 10, so if the agent performs the hold action for 10 consecutive time steps then a 

reward of -10 is given. Else, a reward of 0 is returned.  
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6. Agent Design 

 

Figure 3: DDQN Agent Architecture 

6.1 Double Deep Q-Network Agent  

6.1.1 Q-Learning  

A q-value tells us about the quality of an action given a (state, action) pair. This “quality” is 

expressed as the expected reward gained after taking some action a in some state s. it can be 

shown as follows:  
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This is essentially the Bellman Equation which expresses Q-value as expectation over rewards 

such that the immediate reward is separated out from the future rewards.  

If π is an optimal policy, then the optimal Q-value can be expressed as follows:  

 

We can combine this idea with the Bellman equation shown to express Q-value update as follows:  

 

This Q-update eventually converges to the optimal Q-value as at each time step we are getting 

the reward Rt+1 from the environment.  

6.1.2 Q-Network 

We can easily expand the idea to Q-learning to Neural Networks. Instead of manually updating 

the q-values, we can approximate them directly using a neural network. The loss function can be 

expressed as follows:  
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The gradient of the loss then becomes as follows:  

 

We can see that there is one problem with this loss function. We can see that the max over the 

actions is being taken over the same network which is being used to predict the Q-values 

themselves. So, in a way the gradient is being pulled from both directions which leads to 

instability.  

6.1.3 Double Deep Q-Networks  

To solve the issue of loss instability, double Deep Q-networks use two copies of the Q-network. 

One is the target network which is kept stable for n iterations and the other is the policy network 

which is updated in every interval.  

6.1.4 DDQN Agent Architecture  

We can see from Figure 3, that the network is made up of a stack of fully connected (FC) layers. 

The reason for using only FC layers is that the data is in tabular form (order book array) and other 

features are simply numeric values (portfolio, technical indicators). Hence, specialized 

architectures do not exist to work on such data as usually a fully connected dense layer is enough 

to approximate functions emerging from such data.  

First, we pass the order book array through two FC layers and get an embedding of order book. 

Then this embedding is concatenated with the portfolio array and the features array which are 

then further passed through two fully connected layers.  
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The final layer outputs a discrete action (buy/sell/hold), while the penultimate layer outputs the 

stocks to buy/sell. The reason for designing the architecture in such a way is that Q-value 

algorithm is usually designed to choose only one action and as we are using the PFRL framework, 

having multiple actions at the final layer would require changes to the library. By outputting the 

stock matrix, we eliminate the need for doing so. Also, as the two fully connected layers (FC3 and 

FC4) are in sequential order, the gradient is passed through both of them so they should learn 

meaningful representations such that both set of actions (discrete output and multi stock output) 

makes sense.  

7. Experiments 

7.1 Metrics  

We calculate the efficacy of the model using different metrics on a time scale window of size n. 

For our experiments, we use n = 1000. That is, the metrics are calculated every 1000 steps using 

the values generated during those 1000 steps.  

• Mean Reward: The mean reward simply calculates the mean of all rewards (dense 

reward structure) every 1000 steps.  

• Hit Ratio: The hit ratio is defined as profitable trades over the total number of trades. 

We consider a trade profitable if the reward given by the environment is > 0.  

• Sharpe Ratio: Sharpe ratio gives a measure of the risk adjusted return. It is given by the 

following formula:  
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The return of portfolio in our case is the mean return over 1000 steps (here return = 

reward from taking sell action) and the standard deviation of return is the s.d calculated 

over those mean returns. Risk-free rates are usually taken over larger time windows 

(months/years etc), so we chose a miniscule risk-free return value of 0.01% for a time 

window of 1000 steps.  

7.2 DDQN Agent  

For the DDQN agent, we used a learning rate of 1e-4 and discount factor of 0.99. A linear epsilon 

decay strategy was used which decays the epsilon from (1.0 to 0.1) up to 50k time steps. The 

target (stable) network was updated every 500th time step.  
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8. Results 

 

                           Fig 4a: Hit Ratio               Fig 4b: Mean Reward  

 

Fig 4c: Sharpe Ratio 

From figure 4 we can see that the agent progressively started performing better in terms of all 

metrics. This is a promising result as it shows that the agent can leverage the limit order data to 

make meaningful decisions. After analyzing the actions taken by the agent, we noticed that the 

agent was performing far more buying actions as compared to the sell/hold action. This indicates 

that the denser reward of buy action is actually incentivizing the agent to choose to buy action 

over other actions; this may not always be a good thing. But from the Sharpe Ratio plot we can 
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see that when the agent does sell, it is usually a good high positive Sharpe ratio value indicating 

that the agent is making intelligent selling decisions.  

 

9. Conclusion 

Our environment provides an easy way to process the limit order data and build limit order books 

from it. From our experiments, we can see that the Reinforcement Learning agents are available 

to leverage this data to make intelligent decisions. As future work, we plan to test the 

performance of more agents (Ex – A2C, PPO) on the environment and design more robust 

architectures for these agents.  

Data and resources 

The limit order data used in this project is downloaded from the IEX Trading platform: 

https://iextrading.com/trading/market-data/ 

The code of our project is available at our repository: https://github.com/Omkar-Ranadive/RL-

Finance 

 

 

 

https://iextrading.com/trading/market-data/
https://github.com/Omkar-Ranadive/RL-Finance
https://github.com/Omkar-Ranadive/RL-Finance
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