

Reinforcement Learning for Complex Financial

Time Series Analysis

By

Omkar Ranadive

1

Table of Contents

Index Topic Page Number

1. Abstract 2

2. Introduction 3

3. Related Work 4

4. Market Data 5

5. System Overview 6

6. Environment 7

7. Agent Design 13

8. Experiments 16

9. Results 18

10. Conclusion 19

11. Data and resources 19

12. References 20

Committee Members:

• Han Liu

• David Demeter

Project Repository: https://github.com/Omkar-Ranadive/RL-Finance

https://github.com/Omkar-Ranadive/RL-Finance

2

Abstract:

We present an environment to process and analyze high-frequency trading data. High-frequency

trading involves a large number of transactions happening within a fraction of a second, leading

to a very complex financial time-series. Analyzing such data and developing an investment

strategy to maximize returns in the high-frequency trading scenario involves complex decision

making. While Reinforcement Learning (RL) has been used in the past to analyze normal stock

data, there haven’t been any significant advances in using RL to analyze such high-frequency

data. Our environment provides the ability to process such data by building and maintaining a

limit order book which is then passed on to RL agents for training and developing strategies. We

develop and test the ability of RL agents to process such data and present results on their

performance.

3

1. Introduction

In stock trading, the main goal is to develop an investment strategy to buy/sell stocks to maximize

the profits. Traditionally, investment firms have used statistical techniques like calculating

moving average and financial technical indicators like Relative Strength Index (RSI) and

Commodity Channel Index (CSI) to develop investment strategies. However, the stock market can

be thought of as a very complex process which cannot be modeled and predicted well enough by

simply using these traditional techniques.

In recent years, Deep Learning (DL) has been widely used to model the stock market and predict

the changes in stock prices. Deep Neural Networks are universal functional approximators and

hence, they do a better job of modeling the stock market as compared to traditional techniques.

 Reinforcement Learning techniques have also started to gain a lot of attention in the field of

finance, as RL involves learning an optimal policy which maximizes rewards. This fits in very well

with the financial framework, where learning an optimal policy can be thought of as learning an

optimal investment strategy and maximizing rewards can be thought of as maximizing profits.

However, most of the literature has been focused on processing stock data on a scale of

days/months/years. There are many reasons for this - Such stock data is readily and freely

available over the internet and it is easy to process and deal with.

On the other hand, high-frequency data is not readily available to the public and requires massive

computational power to process. But at the same time, the high-frequency data contains a

plethora of information which if meaningfully processed can help develop profitable strategies.

4

This high-frequency data can be thought of as continuous time-series data where some trade

takes place every time step (where the time step represents a fraction of a second). Therefore,

Reinforcement Learning is a good fit for modeling such data as it is known to work well in model-

free environments with complex environment dynamics like this.

In our work, we have created an environment to process the high-frequency data in an efficient

way. This environment is wrapped around OpenAI’s Gym interface so that it can be easily

accessed by different RL agents. We train different RL agents and test their performance using

various metrics like – Mean Reward, Sharpe Ratio and Hit Ratio.

2. Related Work

Most of the techniques in the literature use traditional statistics and technical indicators to form

features in a meaningful way which are then passed to the Deep Learning model. Various Deep

Learning architectures have been tested in the financial setting. Dash et al., 2016 used a hybrid

stock trading framework which integrates traditional technical analysis with Deep Neural

Networks. Chen et al., 2016 and Seizer et al., 2018 use Deep Convolution Neural Networks to

predict which action to take based on images. They form these images by using different technical

indicators such that the values of these indicators correspond to a different pixel value.

Reinforcement Learning has also been used successfully by Yang et al., 2020 and Lee J.W, 2001

to predict stock movement. Reinforcement Learning has also recently been used for high

frequency trading by Briola et al., 2021 and Rundo et al., 2019.

5

3. Market Data

Figure 1: Example of limit order book, image courtesy of Richard Holowczak

We use market data from the IEX Trading Platform which can be downloaded from their website.

There are two types of market data available on their website:

• Depth of the book (DEEP): This data will reflect real time changes in the limit order book

• Top of the book (TOPS): This data reflects the Best Bid/Offer (BBO); i.e., the top of the

book.

In our work, we use DEEP (Depth of the Book) data which contains high-frequency trading

information. This high-frequency trading information is contained in the form of order book

changes happening in real-time. These changes are provided in the data in the form of price-level

updates. An order book stores limit orders which are reflected by the price-level updates. Limit

orders are orders which are only executed if certain conditions are met. For example, consider

the limit order book instance in figure 1. A separate order book exists for each stock and in each

book, there are two sides – buyers and sellers. Whenever someone wants to buy a stock in the

form of a limit order, they specify the maximum amount of price they are willing to pay and

number of shares (volume) to buy. These orders are arranged descending order of bid prices

6

(highest to lowest). On the other side, whenever someone wants to sell a stock, they specify the

minimum amount they are willing to sell it for and the number of shares they are willing to sell.

These entries are arranged in ascending order of ask prices (lowest to highest). An order is

executed only if the conditions are met on both sides.

Our environment maintains such an order book for every stock by processing the price level

update information from the IEX data.

4. System overview

Figure 2: Overview of the RL framework

There are two major parts in our project as seen in figure 2. We have a custom environment

which can process the limit order data. This environment is wrapped around OpenAI’s Gym

wrapper so that it can be easily used by RL agents.

7

At the agents’ side, we use the PFRL library (Fujita et al., 2019) to develop and train the agents.

There is a PFRL base class which takes in any custom-built agent built using PFRL functions and

then using that agent the class interacts with our custom environment.

5. Environment

5.1 Building the order book

Like mentioned in the previous section, the order book is built by processing the price level

update messages. We process these price-level update messages using iex_parser module. The

end user can provide a list of stock to limit the messages only w.r.t those stocks. The IEX Trading

platform has 430 stocks trading in a day, which is a big number and RL agents would have a

difficult time predicting over the entire list of stocks. Hence, by providing a list of stocks, the

complexity of the environment gets reduced. For our experiments, we chose the top 50 most

traded stocks out of the 430. The top n most traded stocks can be dynamically calculated for any

DEEP data file using the function which we provide in data_utils file.

The order book in our environment is of the following form (key -> value dictionary pair) :

𝑠𝑡𝑜𝑐𝑘 𝑛𝑎𝑚𝑒 → [[𝑏𝑖𝑑 𝑏𝑜𝑜𝑘], [𝑎𝑠𝑘 𝑏𝑜𝑜𝑘], {𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑓𝑜 𝑏𝑖𝑑}, {𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑓𝑜 𝑎𝑠𝑘}

The bid book and ask book lists contain the price information. The prices are sorted using bisect

module. We maintain separate dictionaries to store volume information for fast access. These

volume info dictionaries are of the form: price -> number of shares.

8

The price level update message from the parser gives us the stock name, side (Buyer/seller) and

available volume. Based on this info, we perform order book update. When the available volume

is zero, we delete the entry from the order book, i.e., we assume that the trade got executed.

Algorithm:

If new stock:
 Initialize entry in order book
 Order_book[stock] = [[], [], {}, {}]

If Buyers side:
 Add entry to the buyers list using bisect module and update available vol
 info for it

 If available vol == 0:
 Pop last entry (highest bid price)

If Sellers side:
 Add entry to order sellers list using bisect module and update available vol
 info for it

 If available vol == 0:
 Pop first entry (lowest ask price)

Note: When available vol == 0, then orders corresponding to the highest bid and
lowest ask should be traded but we found that there are rare cases when this is not
the case. This can be attributed to the fact that buyer/seller may retract their
order which may lead to available vol == 0 condition; hence, our implementation also
checks for this case

Limitations:

• As we are only getting the price level update information, we cannot distinguish between

two orders if they have the exact same price value. We simply assume same that the same

price value belongs to the same order and only update the volume information for that

price level.

9

• The order book cannot take in external limit order; i.e., from the RL agent as this would

disrupt the follow of the entries being parsed from the IEX data. Hence, we assume that

the agent can only place market orders.

5.2 State Representation

The state is made of three parts – Order Book Array, Feature Array and Portfolio Array.

• Order Book array: The order book array contains the top n entries from the order book

for each stock. For our experiments, we choose n = 10. Empty values are denoted using

 -1.

• Feature array: Five features are calculated for each stock at each time step. They are as

follows:

o Spread: It is calculated as the difference between highest bid price and lowest ask

price

o Total volume at buyers’ side: This is calculated by summing over all volume

entries on the buyers’ side for a stock

o Total volume at sellers’ side: This is calculated by summing over all volume entries

on the sellers’ side for a stock

o Mid-price: The mid-price gives a unique single price to a stock. This is calculated

as the average of the highest bid and lowest ask price.

10

Let Pb denote the highest bid price and Pa denote the lowest ask price. Then, mid-

price at time step t is as follows:

o Micro Price: Micro-price is similar to mid-price but it also weights the average by

the volume of the highest bid and lowest ask price. Let Vb be the volume of shares

at highest bid and Va be the volume of shares at lowest ask. Then micro-price at

time step t is given as follows:

• Portfolio Array: The portfolio array maintains three pieces of information for each stock

– Number of shares bought, total amount spent on buying those shares and the value of

the bought shares at current time step t.

The values in order book array and feature array are normalized between -1 and 1. Portfolio array

values are normalized between 0 and 1. These three arrays are then combined into a list and

returned to the agent at each time step.

11

5.3 Action Space

The action space of the environment is discrete and can take one of the three values. They are

as follows: Buy (0), Sell (1), Hold (2).

Along with these three discrete actions, the agent will also output a stock matrix indicating which

of the n stocks to buy (in our experiments, n = 50). So, this stock matrix will 50 entries where each

entry is either 1 or 0. Each action works as follows:

• Buy (0): We take the stock matrix outputted by the agent and pass it through a liquidity

checker which ensures that the stock which the agents want to buy are actually available

at present, i.e., there is at least one sell entry in the order book for that stock. In case a

stock is not available, it is set to 0 in the stock matrix. After passing it through the liquidity

checker, the stock is purchased and added to the agent’s portfolio. We only allow one

share to be purchased per share per time step to simplify the environment. Fractional

shares cannot be purchased as of now, as that too would increase the complexity of the

environment.

• Sell (1): Similar to the buy case, we ensure using the liquidity checker that there is actually

someone to buy the stock, i.e., there is at least one buy entry in the order book. We

assume that the agent wants to sell all of the stocks to simply the environment. The stocks

are sold at the highest bid price based on the current order book.

• Hold (2): This action implies that the agent does not wish to either buy or sell for that

time step.

12

5.4 Reward Design

Most of the literature only uses profit/loss as the reward signal. To incorporate a denser reward

structure, we also calculate rewards in the buy/hold scenarios. The reward structure for each

case is as follows:

• Buy (0): To check whether buying a stock is a good or bad move, we apply a lookahead

on the order book; i.e., how will the order book look f time steps ahead. We use f = 50 for

our experiments. So, if after f time steps ahead, the buy price has gone done for a stock,

then buying it right now was a bad idea, if it has gone up, then buying it at present is a

good idea. The reward is calculated as follows:

𝑀𝑓 − 𝑀𝑐

Where Mf is the mean cost to buy the shares in the future (50 time steps ahead) and Mc

is the mean cost to buy the shares at current time step. There is another case to consider.

In case, the stocks are no longer available in the future, it means they got sold out. So, in

this case too, we reward the agent positively and give it a fixed reward of +5.

• Sell (1): The reward for the sell action is profit/loss after selling the shares.

• Hold (2): As this is a high frequency scenario, we want the agent to be “active”. So, we

penalize the agent if it holds (does nothing) for too long. We have a hold threshold which

is set to 10, so if the agent performs the hold action for 10 consecutive time steps then a

reward of -10 is given. Else, a reward of 0 is returned.

13

6. Agent Design

Figure 3: DDQN Agent Architecture

6.1 Double Deep Q-Network Agent

6.1.1 Q-Learning

A q-value tells us about the quality of an action given a (state, action) pair. This “quality” is

expressed as the expected reward gained after taking some action a in some state s. it can be

shown as follows:

14

This is essentially the Bellman Equation which expresses Q-value as expectation over rewards

such that the immediate reward is separated out from the future rewards.

If π is an optimal policy, then the optimal Q-value can be expressed as follows:

We can combine this idea with the Bellman equation shown to express Q-value update as follows:

This Q-update eventually converges to the optimal Q-value as at each time step we are getting

the reward Rt+1 from the environment.

6.1.2 Q-Network

We can easily expand the idea to Q-learning to Neural Networks. Instead of manually updating

the q-values, we can approximate them directly using a neural network. The loss function can be

expressed as follows:

15

The gradient of the loss then becomes as follows:

We can see that there is one problem with this loss function. We can see that the max over the

actions is being taken over the same network which is being used to predict the Q-values

themselves. So, in a way the gradient is being pulled from both directions which leads to

instability.

6.1.3 Double Deep Q-Networks

To solve the issue of loss instability, double Deep Q-networks use two copies of the Q-network.

One is the target network which is kept stable for n iterations and the other is the policy network

which is updated in every interval.

6.1.4 DDQN Agent Architecture

We can see from Figure 3, that the network is made up of a stack of fully connected (FC) layers.

The reason for using only FC layers is that the data is in tabular form (order book array) and other

features are simply numeric values (portfolio, technical indicators). Hence, specialized

architectures do not exist to work on such data as usually a fully connected dense layer is enough

to approximate functions emerging from such data.

First, we pass the order book array through two FC layers and get an embedding of order book.

Then this embedding is concatenated with the portfolio array and the features array which are

then further passed through two fully connected layers.

16

The final layer outputs a discrete action (buy/sell/hold), while the penultimate layer outputs the

stocks to buy/sell. The reason for designing the architecture in such a way is that Q-value

algorithm is usually designed to choose only one action and as we are using the PFRL framework,

having multiple actions at the final layer would require changes to the library. By outputting the

stock matrix, we eliminate the need for doing so. Also, as the two fully connected layers (FC3 and

FC4) are in sequential order, the gradient is passed through both of them so they should learn

meaningful representations such that both set of actions (discrete output and multi stock output)

makes sense.

7. Experiments

7.1 Metrics

We calculate the efficacy of the model using different metrics on a time scale window of size n.

For our experiments, we use n = 1000. That is, the metrics are calculated every 1000 steps using

the values generated during those 1000 steps.

• Mean Reward: The mean reward simply calculates the mean of all rewards (dense

reward structure) every 1000 steps.

• Hit Ratio: The hit ratio is defined as profitable trades over the total number of trades.

We consider a trade profitable if the reward given by the environment is > 0.

• Sharpe Ratio: Sharpe ratio gives a measure of the risk adjusted return. It is given by the

following formula:

17

The return of portfolio in our case is the mean return over 1000 steps (here return =

reward from taking sell action) and the standard deviation of return is the s.d calculated

over those mean returns. Risk-free rates are usually taken over larger time windows

(months/years etc), so we chose a miniscule risk-free return value of 0.01% for a time

window of 1000 steps.

7.2 DDQN Agent

For the DDQN agent, we used a learning rate of 1e-4 and discount factor of 0.99. A linear epsilon

decay strategy was used which decays the epsilon from (1.0 to 0.1) up to 50k time steps. The

target (stable) network was updated every 500th time step.

18

8. Results

 Fig 4a: Hit Ratio Fig 4b: Mean Reward

Fig 4c: Sharpe Ratio

From figure 4 we can see that the agent progressively started performing better in terms of all

metrics. This is a promising result as it shows that the agent can leverage the limit order data to

make meaningful decisions. After analyzing the actions taken by the agent, we noticed that the

agent was performing far more buying actions as compared to the sell/hold action. This indicates

that the denser reward of buy action is actually incentivizing the agent to choose to buy action

over other actions; this may not always be a good thing. But from the Sharpe Ratio plot we can

19

see that when the agent does sell, it is usually a good high positive Sharpe ratio value indicating

that the agent is making intelligent selling decisions.

9. Conclusion

Our environment provides an easy way to process the limit order data and build limit order books

from it. From our experiments, we can see that the Reinforcement Learning agents are available

to leverage this data to make intelligent decisions. As future work, we plan to test the

performance of more agents (Ex – A2C, PPO) on the environment and design more robust

architectures for these agents.

Data and resources

The limit order data used in this project is downloaded from the IEX Trading platform:

https://iextrading.com/trading/market-data/

The code of our project is available at our repository: https://github.com/Omkar-Ranadive/RL-

Finance

https://iextrading.com/trading/market-data/
https://github.com/Omkar-Ranadive/RL-Finance
https://github.com/Omkar-Ranadive/RL-Finance

20

References

[1] Dash, R., & Dash, P. K. (2016). A hybrid stock trading framework integrating technical analysis

with machine learning techniques. The Journal of Finance and Data Science, 2(1), 42-57.

[2] Sezer, O. B., & Ozbayoglu, A. M. (2018). Algorithmic financial trading with deep convolutional

neural networks: Time series to image conversion approach. Applied Soft Computing, 70, 525-

538.

[3] Chen, J. F., Chen, W. L., Huang, C. P., Huang, S. H., & Chen, A. P. (2016, November). Financial

time-series data analysis using deep convolutional neural networks. In 2016 7th International

conference on cloud computing and big data (CCBD) (pp. 87-92). IEEE.

[4] Yang, H., Liu, X. Y., Zhong, S., & Walid, A. (2020). Deep reinforcement learning for automated

stock trading: An ensemble strategy. Available at SSRN.

[5] Lee, J. W. (2001, June). Stock price prediction using reinforcement learning. In ISIE 2001. 2001

IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570) (Vol. 1,

pp. 690-695). IEEE.

21

[6] Briola, A., Turiel, J., Marcaccioli, R., & Aste, T. (2021). Deep Reinforcement Learning for Active

High Frequency Trading. arXiv preprint arXiv:2101.07107.

[7] Rundo, F. (2019). Deep LSTM with reinforcement learning layer for financial trend prediction

in FX high frequency trading systems. Applied Sciences, 9(20), 4460.

[8] Fujita, Y., Kataoka, T., Nagarajan, P., & Ishikawa, T. (2019). ChainerRL: A deep reinforcement

learning library. arXiv preprint arXiv:1912.03905.

