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Autocurriculum: The Hypothesis 
• In a multi-agent system, the competition and cooperation 

between agents leads to emergence of innovation

• Social interaction leads to naturally emergent curriculum 

called as autocurriculum 
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The problem problem 
• Intelligence is the ability to adapt to diverse set of 

environments 

• So, for single agents the “cleverness” is bounded by the 

complexity of the environment 
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Exploration by exploitation 
• Structure learning by changing the underlying 

environment 

• Such a change is called as a challenge 

• Challenges cause agent to explore new states by 

exploiting known information 
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Achieving this using autocurriculum
• Use multi-agents - No environment engineering needed 

• Social interaction between agents give rise to challenges 

• Challenges are generated by system, hence called 

autocurricula 
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Exogenous challenges 
• Exogenous challenge originates outside the adaptive unit 

• Example - Agent 1 changes its strategy if Agent 2 changes 

its strategy 

• May not always work. Example - Rock paper scissors 
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Self-play 
• Play against an older version of yourself - neither too 

weak neither too strong 

• Agent will learn to exploit its own errors 

• Approaches Nash equilibrium for small environments 
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Endogeneous challenges
• Challenges faced by cooperating agents 

• Agents must learn to find socially beneficial outcomes 
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Hide and Seek: Rules 
• Hiders avoid line of sight, seekers bring hiders in line of sight 

• Preparation phase - Hiders prepare

• Team based reward - +1 if all hiders are hidden, -1 if any is 

seen b seeker 

• Agents can grab objects, lock objects and unlock objects 

• No explicit incentive to interact with the objects 
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Hide and Seek: Demo 

Emergent Tool Use from 
Multi-Agent Interaction
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https://openai.com/blog/emergent-tool-use/
https://openai.com/blog/emergent-tool-use/


Alpha Go: Policy and Value networks    
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Alpha Go: Training process

12Image courtesy of Deepmind, NIPS 2017



Alpha Go: Reducing breadth 
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Alpha Go: Reducing depth 
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Monte Carlo Tree Search (MCTS)
• Simulate k episodes from current state st using simulation policy 

π

• Build a search tree of visited states and actions 
• Evaluate states as mean return of episodes 
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MCTS
• Each simulation consists of two phases (in-tree, out-of-tree)

▪ Tree policy (improves): pick actions to maximise Q(S;A)

▪ Default policy (fixed): pick actions randomly

• Keep repeating such simulations 

• Main idea: We visit the most beneficial states more often 
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Alpha Go: Zero
• No human data -  only self-play

• No human features - only raw board image 

• Single resnet instead of two separate networks 

• No randomized Monte-Carlo rollouts 
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Alpha Go Zero: Architecture
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● 19x19 board 
● 8 feature maps for 

white (with history) 
● 8 feature maps for 

black (with history)
● 1 feature map for 

turn indication 

Image courtesy of Deepmind, NIPS 2017



Alpha Go Zero: Self Play
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Alpha Go Zero: Update
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Alpha Go Zero: Update
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Performance 
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