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Autocurriculum: The Hypothesis

* |In a multi-agent system, the competition and cooperation
between agents leads to emergence of innovation

« Social interaction leads to naturally emergent curriculum

called as autocurriculum
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The problem problem

* Intelligence is the ability to adapt to diverse set of

environments

* So, for single agents the “cleverness” is bounded by the

complexity of the environment
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Exploration by exploitation

« Structure learning by changing the underlying
environment

« Such a change is called as a challenge

« Challenges cause agent to explore new states by

exploiting known information
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Achieving this using autocurriculum

« Use multi-agents - No environment engineering needed
« Social interaction between agents give rise to challenges
« Challenges are generated by system, hence called

autocurricula
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Exogenous challenges

« Exogenous challenge originates outside the adaptive unit
« Example - Agent 1 changes its strategy if Agent 2 changes
its strategy

« May not always work. Example - Rock paper scissors
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Self-play
« Play against an older version of yourself - neither too

weak neither too strong
» Agent will learn to exploit its own errors

« Approaches Nash equilibrium for small environments
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Endogeneous challenges

« Challenges faced by cooperating agents

« Agents must learn to find socially beneficial outcomes
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Hide and Seek: Rules

« Hiders avoid line of sight, seekers bring hiders in line of sight

* Preparation phase - Hiders prepare

« Team based reward - +1 if all hiders are hidden, -1 if any is

seen b seeker

e Agents can grab objects, lock objects and unlock objects

* No explicit incentive to interact with the objects
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Hide and Seek: Demo

Emergent Tool Use from
Multi-Agent Interaction



https://openai.com/blog/emergent-tool-use/
https://openai.com/blog/emergent-tool-use/
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Alpha Go: Training process
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Alpha Go: Reducing breadth
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Alpha Go: Reducing depth
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Monte Carlo Tree Search (MCTS)

- Simulate k episodes from current state s, using simulation policy
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- Build a search tree of visited states and actions
- Evaluate states as mean return of episodes
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MCTS

« Each simulation consists of two phases (in-tree, out-of-tree)
= Tree policy (improves): pick actions to maximise Q(S;A)
= Default policy (fixed): pick actions randomly

« Keep repeating such simulations

« Main idea: We visit the most beneficial states more often
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Alpha Go: Zero

 No human data - only self-play
* No human features - only raw board image
« Single resnet instead of two separate networks

« No randomized Monte-Carlo rollouts
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Alpha Go Zero: Architecture
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Alpha Go Zero: Self Play
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Alpha Go Zero: Update
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New policy network P’ is trained to predict AlphaGo’s moves
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Alpha Go Zero: Update
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