
Multi-Agent Reinforcement Learning

Omkar Ranadive

Autocurriculum: The Hypothesis
• In a multi-agent system, the competition and cooperation

between agents leads to emergence of innovation

• Social interaction leads to naturally emergent curriculum

called as autocurriculum

2

The problem problem
• Intelligence is the ability to adapt to diverse set of

environments

• So, for single agents the “cleverness” is bounded by the

complexity of the environment

3

Exploration by exploitation
• Structure learning by changing the underlying

environment

• Such a change is called as a challenge

• Challenges cause agent to explore new states by

exploiting known information

4

Achieving this using autocurriculum
• Use multi-agents - No environment engineering needed

• Social interaction between agents give rise to challenges

• Challenges are generated by system, hence called

autocurricula

5

Exogenous challenges
• Exogenous challenge originates outside the adaptive unit

• Example - Agent 1 changes its strategy if Agent 2 changes

its strategy

• May not always work. Example - Rock paper scissors

6

Self-play
• Play against an older version of yourself - neither too

weak neither too strong

• Agent will learn to exploit its own errors

• Approaches Nash equilibrium for small environments

7

Endogeneous challenges
• Challenges faced by cooperating agents

• Agents must learn to find socially beneficial outcomes

8

Hide and Seek: Rules
• Hiders avoid line of sight, seekers bring hiders in line of sight

• Preparation phase - Hiders prepare

• Team based reward - +1 if all hiders are hidden, -1 if any is

seen b seeker

• Agents can grab objects, lock objects and unlock objects

• No explicit incentive to interact with the objects

9

Hide and Seek: Demo

Emergent Tool Use from
Multi-Agent Interaction

10

https://openai.com/blog/emergent-tool-use/
https://openai.com/blog/emergent-tool-use/

Alpha Go: Policy and Value networks

11Image courtesy of Deepmind, NIPS 2017

Alpha Go: Training process

12Image courtesy of Deepmind, NIPS 2017

Alpha Go: Reducing breadth

13Image courtesy of Deepmind, NIPS 2017

Alpha Go: Reducing depth

14Image courtesy of Deepmind, NIPS 2017

Monte Carlo Tree Search (MCTS)
• Simulate k episodes from current state st using simulation policy

π

• Build a search tree of visited states and actions
• Evaluate states as mean return of episodes

15

MCTS
• Each simulation consists of two phases (in-tree, out-of-tree)

▪ Tree policy (improves): pick actions to maximise Q(S;A)

▪ Default policy (fixed): pick actions randomly

• Keep repeating such simulations

• Main idea: We visit the most beneficial states more often

16

17Image courtesy of David Silver

18Image courtesy of David Silver

19Image courtesy of David Silver

20Image courtesy of David Silver

21Image courtesy of David Silver

22Image courtesy of David Silver

Alpha Go: Zero
• No human data - only self-play

• No human features - only raw board image

• Single resnet instead of two separate networks

• No randomized Monte-Carlo rollouts

23

Alpha Go Zero: Architecture

24

● 19x19 board
● 8 feature maps for

white (with history)
● 8 feature maps for

black (with history)
● 1 feature map for

turn indication

Image courtesy of Deepmind, NIPS 2017

Alpha Go Zero: Self Play

25Image courtesy of Deepmind, NIPS 2017

Alpha Go Zero: Update

26Image courtesy of Deepmind, NIPS 2017

Alpha Go Zero: Update

27Image courtesy of Deepmind, NIPS 2017

Performance

28Image courtesy of Deepmind, NIPS 2017

